Le Shaker Data, c’est quoi ?

C’est une application développée en SaaS qui permet à l’ensemble de nos partenaires, de qualifier, de façon automatique et certaine, le financement des besoins de leurs clients en un temps record.

Continue reading

BpiFrance apporte son soutien à Glaz tech+fi

Nous sommes très fiers de vous annoncer que Bpifrance apporte son soutien à Glaz tech+fi dans le cadre du financement de l’innovation. 

Un grand merci à Hervé LelargeEric Perchais et Claire Portrat pour leur support dans nos projets 🙏🏼 
Grâce à leur implication et leur confiance, nous pouvons accélérer le développement de notre plateforme de services de crédits, en gagnant 2 ans sur les développements prévus !

#digital#fintech#fintechnews#finance#immobilier#credit#technology#AI#ML#banking#digitalbanking#innovation#outil#banque#bpi#france#aide#merci#developpement

Pourquoi nous utilisons le Machine Learning ?

Le Machine Learning, qu’est-ce que c’est ?

Le Machine Learning (traduit littéralement Apprentissage Machine) est une partie d’un domaine dont tout le monde a déjà entendu parler : l’Intelligence Artificielle.
L’objectif est d’utiliser des algorithmes et des méthodes mathématiques pour déduire de nouvelles informations à partir de données existantes.

Le Machine Learning répond à deux objectifs :
– la prédiction, à l’aide de méthodes de régression : Comment caractériser l’évolution du solde bancaire au fil du temps ? 📈
– la classification : Quelle(s) étiquette(s) puis-je attribuer à cette dépense ? 🗄

L’intérêt principal du Machine Learning est qu’il permet en général de déduire des “motifs” dans les données, que l’on n’aurait pas forcément vu à l’oeil nu. 🔎

Le Machine Learning, ça sert vraiment ?

Oui ! Tout le monde aujourd’hui l’utilise, parfois sans s’en rendre compte. Les services de recommandations des géants du web
comme Google, Amazon, Netflix, Spotify par exemple s’en servent pour proposer du contenu qui pourrait vous plaire. 👍🏼

Votre boîte mail utilise également le Machine Learning, notamment pour détecter les spams. Quand vous signalez un message comme spam, les filtres de votre boîte en tiennent compte et s’améliorent.

Les assistants vocaux, à la mode en ce moment, utilisent aussi du Machine Learning pour mieux comprendre ce que vous dites. 🗣
Comme il est impossible de connaître les voix et les accents de tout le monde, on cherche à faire des rapprochements entre les mots prononcés et les mots que le système connaît déjà.

Et chez Glaz tech+fi alors, pourquoi utilise-t-on le Machine Learning ?

Lorsqu’une personne souhaite monter un dossier chez un de nos partenaires, le but de Glaz tech+fi est d’apporter une information rapide et qualitative sur le dossier. Sera t-il réalisable ? Dans quelle banque ? Sous quel format ? 🧐

Notre objectif est de faire gagner du temps aux analystes. De manière à avoir une bonne idée de la faisabilité d’un dossier, on met à profit les données issues des relevés bancaires des emprunteurs pour établir une “note”. Elle donne à l’analyste un aperçu du dossier, et lui permet de réorienter au besoin l’emprunteur. Pour cela, on se base sur l’analyse des dossiers déjà passés par notre équipe. 📚

Glaz tech+fi se sert également de techniques de ML pour optimiser les produits complexes proposés au client, de manière à ce qu’ils soient les mieux adaptés au besoin avec la plus forte probabilité d’acceptation en banque.

En résumé, Glaz tech+fi se sert du ML pour faire gagner du temps à ses collaborateurs et pour optimiser les produits proposés aux
clients. 💪🏼